The remaining imprecision in the flight maneuvers is usually in the range of 10 to 15 centimeters. To compensate this, three brushless maxon motors accurately position the gripper arm. The three slides, which move on linear guides, are all individually positioned by means of a toothed belt. With this system, the gripper can reach any position within the marked 3D space. To save weight without compromising force, the team chose the compact ECX TORQUE 22 M drives.
For dangerous or inaccessible areas
With Prismav, the students established the foundation for further research. Matthias Rubio adds: “We demonstrated that a flying manipulator can grip, transport, and put down a 500 g cylinder by interacting with its surroundings.” The key is that the gripper arm compensates positioning errors faster than the drone moves.
The focus project, which was presented in 2021, met with great response. Therefore the students are now continuing to develop the Prismav as part of their Bachelor’s projects. They are optimizing the automated positioning, flight path calculation, and control software, and are integrating an intuitive controller. This makes sense, because the potential range of applications is huge. For example, flight robots could in future perform work in inaccessible or dangerous locations: tightening screws, setting up scaffolding, repairing high-voltage lines, or even building avalanche protection structures.